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ABSTRACT

Thermal expansion determinations were made on two aluminum alloys
and three stainless steel alloys in the temperature range from 4° to
300°K. The experimental apparatus is described, and the analytical
procedures which were required to reduce the data accurately to a
usable form are discussed. The data are presented in both tabular and
graphical form, and both linear coefficient of expansion and total
percentage of expansion as a function of temperature are given.
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TECHNICAL MEMORANDUM X-53436

LOW TEMPERATURE THERMAL EXPANSION
OF STRUCTURAL METALS

SUMMARY i/ ;/(,2 3K

An apparatus for the determination of low temperature linear thermal
expansion of metals and plastics in the temperature range from 4° to 300°K
is described. The apparatus was developed by Midwest Research Institute
(MRI) on Contract NAS8-835, under the technical direction of the Materials
Division, and was subsequently delivered to MSFC and installed in the thermal
properties laboratory of this division. The thermal expansion determinations
described in this report were made to provide useful engineering data and
qualification and calibration of the apparatus.

Modifications made to the apparatus to permit automatic data recording
are discussed, and the data reduction process resulting from these modifi-
cations are discussed in detail. It is shown that data points, taken under
equilibrium conditions, are possible at intervals of 10°K, which produces
an extremely smooth and accurate data curve.

Determinations were made of the linear coefficient of thermal expan-
sion for 321, 347, and 355 stainless steels, and 2017-T4, 6061-T6, and
6061-T651 aluminum alloys in the temperature range from 10°to 300°K. The
calibration and qualification run was made on 347 stainless steel since
MRI had made calibration runs on the same material. Comparison of the
data from this run with the MRI data indicates excellent agreement.

Data from all determinations are presented in both tabular and grath -
ical form and both linear coefficient of expansion and total percentage
expansion are given.

The apparatus is shown to be capable of determining the linear coeffi-
cient of thermal expansion in the temperature range from 10°to 300°K with

an accuracy of +2.0 percent. -
|
/?/{/% i

INTRODUCTION

The extensive use of cryogenic propellants in most large launch
vehicle systems has created a need for accurate measurement of the thermal
properties of structural materials down to the temperature of liquid



hydrogen (20°K). The large propellant tanks of these vehicles serve not
only as propellant containers but also as an integral part of the structure.
Thus, the low temperature thermal expansion of the tank materials is im-
portant to the vehicle designer. The propellant tanks will be cooled from
ambient to cryogenic temperature when filled, thus resulting in overall
contraction; however, they still must mate properly with the main thrust
structure, which is still at ambient temperature, without producing undue
stress at the connections.

As an example, the Saturn V liquid oxygen tank is 1,000 centimeters
in diameter, with a circumference of 3,140 centimeters. The tank is con-
structed of aluminum and, during cooldown from ambient temperature (300°K)
to liquid oxygen temperature (92°K), undergoes a thermal contraction of
11.6 centimeters, which must be absorbed by the thrust and load structures.
It is necessary for the designer to know the thermal expansion (or contrac-
tion) for the various alloys of aluminum or other structural materials
which might be used to provide an allowance for this contraction.

To provide this information, a low temperature thermal expansion
apparatus was developed by MRI on contract NAS8-835 under the technical
supervision of the Materials Division. This apparatus subsequently was
delivered and installed in the thermal properties laboratory of this
division. The thermal expansion determinations to be described were made
to provide useful engineering design data and qualification and calibration
data for this apparatus.

THERMAL EXPANSION

At absolute zero (0°K), when the atoms in a solid are at rest
(neglecting the quantum-mechanical zero point energy), the actual volume
of the solid will be that for which the energy is a minimum (ref. 1). At
any other temperature (T), when the atoms are not at rest but are vibrating
about their equilibrium positions, the volume of the solid is greater
because of the resulting thermal expansion.

If the expansion in only one direction (linear expansion) is considered,
a small change in temperature ( dT) produces a small change in length (dL)
and allows the definition of a linear coefficient of thermal expansion,
alpha,

o = L. 4L (equation 1 (ref. 2))
L dT

where L is the initial length;
dL is the change in length;
dT is the change in temperature.




Thus, the coefficient is actually the instantaneous slope of the
line resulting from a plot of sample length versus temperature.

From this relation, an expression relating the sample length to
initial length at any temperature may be obtained. Since ,

a:l d_L.
L dT
separating variables
g= adT
L
integrating
InL = T+ C

taking antilogarithms of both sides
L= expC'exp (aT) =Dexp (al)

evaluating the constant D for the initial conditions that at T = 0,
L = Lo, the length at temperature, T,

Lp = Loexp aT =L, (1 +aT) (equation 2)
The proper use of this relation requires that the coefficient be

constant within the temperature range of interest or that it be averaged
over the temperature range from T =0 to T =T,

o . k-
average = G- (equation 3)

where L, and Ly are the lengths at temperature T, and T respectively.
This quantity is the average value of the slope of the length versus
temperature plot. It should be noted that o.average is not the true
coefficient of linear thermal expansion and can differ from the true value
by an appreciable amount if the temperature span is wide.

In an isotropic substance, the coefficient of volume expansion, beta,
is simply three times alpha. However, if a material is anisotropic, the
linear coefficient is found to vary as the line along which it is observed
takes different orientations with respect to the crystal axes (ref. 3).

In general, it is possible to choose three directions orthogonal (not
necessarily the crystallographic axes) such that the linear coefficient
of expansion of the three axes describes the expansion of the crystal as
a whole.
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In many solids, hysteresis is observed (ref. 2). When these solids
are heated and subsequently cooled, they do not regain their original
dimensions. This is expected in polycrystalline materials because of the
~variation in size of the individual grains and their purely random packing
(ref. 3). Large alterations in the size and arrangement of the crystalline
grains may be produced during a heating-cooling cycle and this is not a
reversible process. It is often helpful to make hardness determinations
on a sample before and after making a test run to insure against mis-
interpretation of results caused by this effect (ref. 4).

EXPERIMENTAL APPARATUS

The apparatus used has been fully described in the open literature
(ref. 5), and only a brief resume of the basic operation will be included
in this report. The basic measuring arrangement is shown in block form
in FIG 1 and in detail in FIG 2 and 3. It consists of five major
elements: (1) measuring head, (2) interferometer, (3) photomultiplier
detector, (4) photometer amplifier, and (5) recorder and readout.

The measuring head is suspended in a deep double-wall, silvered-
glass dewar containing the appropriate cryogenic fluid. Sample temperature
is controlled by a small heater (10 turns of 28 gauge constantan wire
wrapped around the sample holder), and the sample expansion is transmitted
to the lower Fizeau interferometer plate through a quartz rod driving
a precision metal piston. Movement of the lower plate with respect to
the fixed upper Fizeau plate (caused by expansion or contraction of the
specimen) results in the movement of the interference fringe pattern in
direct proportion to the movement of the specimen. A portion of the near
field pattern is focused on the first dynode of a six-stage electron multi-
plier photodetector by means of appropriate optics aligned axially with
the interferometer collimator. As the field pattern changes from a bright
fringe to a dark fringe, the change in intensity is detected by the electron
multiplier, amplified in the photometer amplifier, and displayed on a
potentiometric recorder. The apparatus was modified at this Center by
equipping the recorder with a cam-driven microswitch which converts the
voltage swing to drive a digital counter. The counter then reads the
total number of fringes directly; thus, the expansion of the sample is
determined easily.

Temperature measurement is accomplished by copper constantan thermo-
couples using a 32°F reference. The thermocouple potentials are read
with a K-3 potentiometer utilizing a Zener stabilized working voltage
source and are converted to equivalent temperature readings by the use
of NBS standard tables (ref. 6).




MEASUREMENT TECHNIQUE

Cryogenic fluid is transferred into the dewar, and the sample temp-
erature is monitored until the sample reaches equilibrium, as indicated
by the temperature and by the fringe counter (stationary fringe patterm).
Then, voltage is applied to the sample heater until the fringe pattern
begins to move. Heater voltage is kept constant until the sample again
reaches equilibrium as indicated by both the temperature and the fringe
pattern. The heater voltage is increased by another small increment, and
this technique is continued throughout the run. Temperature and total
fringe counts at that temperature are recorded at intervals of approximately
ten degrees throughout the run.

DATA REDUCTION

Since the passage of one fringe represents a change of one-half
wavelength in path distance between the two interferometer plates, the
expansion or change in sample length is

d=N\/2
where

d is the change in length
N is the number of fringes
N is the wavelength

The interferometer is operating from the 5461 Angstrom green line
of mercury (filtered) so _each fringe represents a length change of 2730
Angstroms, or 2.73 x 107> centimeters. The total number of fringes at
a given temperature and the sample initial length (at ambient temperature)
is known; therefore, a plot of sample length as a function of temperature
may be obtained. The linear coefficient of thermal expansion may be
obtained directly from this plot by taking a uniform increment of temp-
erature, measuring the change in length over this temperature span, and

a = l L2 - Ll

(equation &4 (ref. 2))
L Tp - Ty

where a is the linear coefficient of the expansion in cm/cm °K;

L1 is the length at temperature Tj;
Lo is the length at temperature Tj;
T is the initial temperature;

T, is the final temperature.



This, of course, is the value of alpha averaged over the temperature
span from T; to Ty and not the point slope; however, if the temperature
span is not too wide, it is a close approximation to the true value.

The plot of length as a function of temperature also served as a
basis for the total percentage expansion data in which

percent expansion = _EE;;_EQQQ (equation 5 (ref. 7))
L3gg (300-T)

where Ly is the length at temperature (T) and L3pgg is the length at 300°K.

INTERFEROMETRIC TECHNIQUE ERRORS

There were three primary sources of error in the interferometric
method of determining thermal expansion as originally proposed and built
by Fizeau (ref. 2). These were errors caused by (1) the change in wave-
length resulting from the change in index of refraction of the air be-
tween the plates as the temperature and pressure change (ref. 8), (2)
the increase inoptical path length resulting from the thermal expansion
of the interferometer plates (ref. 9), and (3) tilting of the interfero-
meter plates by nonuniform expansion of the samples (ref. 8 and 10). The
instrument designed by MRI has eliminated these sources of error by
removing the interferometer plates from the heated (or cooled) area and
using a single sample with a precision fitted metal piston to assure
continuous alignment (ref. 5), as shown in FIG 2. This approach had been
used before (ref. 10), but, while eliminating the three sources of error,
it had introduced an additional larger error. This was due to the long
quartz rod which was used to transmit the specimen expansion to the
interferometer plates. Due to the length of this rod (despite the low
thermal expansion of quartz), the total change in length of the rod was
appreciable. MRI compensated for this effect by supporting the specimen
on the bottom of a quartz tube enclosing the measuring head. As temper-
ature increases, the rod will get longer and move the measuring piston
up; the outer quartz tube also will increase in length, downward, which
will lower the sample and quartz rod. If the temperature of the quartz
rod and the quartz tube are the same (or, more accurately, if the thermal
gradients are the same) and the two are equal in length, the total system
is compensated, and the net movement is zero. In this apparatus, a small
difference in length does exist between the quartz rod and the quartz tube.
However, heat is applied directly to the sample by an enclosing cylinder,
and the only heat input to the quartz rod and tube is by conduction from
the sample through a small contact area, Additionally, the outer tube
is in optical contact with the surrounding nitrogen dewar and encloses
the quartz rod, which should ensure the maintenance of an equal thermal
gradient. For these reasons, no quartz correction terms were applied.




DISCUSSION OF DATA

Determinations were made of the linear coefficient of thermal ex-
pansion for six materials, three 300 series stainless steel samples and
three aluminum samples. Two of the aluminum samples differed only in heat
treatment. They were deliberately chosen to illustrate the change in
expansion coefficient produced by heat treatment.

The calibration and qualification run was made with a sample of 347
stainless steel since MRI had made calibration runs on the same material
when the apparatus was installed in their laboratories. Figure 4 is a
plot of linear coefficient of thermal expansion as a function of temper-
ature for 347 stainless steel. Figure 5 is a plot of percent expansion
as a function of temperature plotted from equation (5) for 347 stainless
steel with the MRI data plotted for comparison. The following table
indicates the excellent agreement obtained:

PERCENT EXPANSION

347 Stainless Steel

Temp. (°K MRI MSFC Difference % Error
250 0.079 0.080 .001 1.25
200 0.154 0.155 .001 0.65
150 0.218 0.220 .002 0.9
100 0.220 0.226 .006 2.17

50 0.297 0.306 .009 2.94

Both the MRI sample and the MSFC sample had a Rockwell B hardness of
84-87 prior to testing and 89-93 after testing.

With this run, the apparatus was considered to be fully qualified
and calibrated, and the subsequent determinations on the other samples
were made on this basis. These are shown in FIG 6 through 14, in graphic
form, and in Tables 1 and 2.

The hysteresis effect is illustrated graphically in FIG 10 and 11.
Two separate runs were made on a sample of 6061-T651 aluminum alloy. The
sample was cooled to liquid helium temperature and then brought back to
ambient temperature for a period of several days before the second run
was made. The change in the linear coefficient of thermal expansion due
to rearrangement of the grain structure during the heating-cooling cycle
can be easily seen in both FIG 10 and 11.

Figure 12 illustrates the difference in expansion coefficient for
two samples of the same aluminum alloy, 6061, differing only in heat



treatment. In general, the -T651 condition differs from the -T6 condition
in being stress relieved. The difference in expansion coefficient for
this relatively minor change is readily apparent.

Hardness determinations were made on all specimens after tests and
were compared to nominal values for the material. The aluminum alloys
decreased in hardness by about 20 percent, and the stainless steel alloys
increased in hardness (indicating a partial transition from austenitic
to martensitic) by a small percentage. Both results normally are ex-
pected for the particular materials involved and primarily serve as a
warning against making successive determinations on the same material
unless the material is heat treated to the original condition before the
second run is made.

All specimens displayed the smooth curve expected for both coefficient
of expansion and percent expansion. The data points, in almost all cases,
lie completely on the curve; thus, an averaging or statistical reduction
process was not required to produce the actual curve. Figure 16 shows a
portion of the plot of length versus temperature for 321 stainless steel
with the actual data points from the digital counter and illustrates
graphically the extreme uniformity of the numerical data produced by this
apparatus,

CONCLUSIONS
1. The apparatus is fully qualified and calibrated.

2. The apparatus is capable of determining the linear coefficient
of thermal expansion in the range from 4° to 300°K with excellent accuracy.

3. Modifications to the apparatus have automated fully the fringe
counting mechanism, increased the accuracy, and reduced operator time
considerably.
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TABLE 1

EXPERIMENTAL VALUES OF THE LINEAR COEFFICIENT OF THERMAL EXPANSION

10-6 cM/eM °k

321 347 355 2017-T4 6061-T6 6061-T651

Temperature, °K SS SS SS Al Alloy Al Alloy Al Alloy
12.5 0.15 0.07 0.19 0.15 0.35 0.47
37.5 1.52 0.59 0.74 1.78 2.76 3.63
62.5 5.52 4.89 4.38 6.76 7.46 7.47
87.5 8.64 7.89 5.64 10.79 11.73 10.47
112.5 10.66 0.98 6.78 14.22 13.78 12.88
137.5 11.84 11.76 7.49 16.27 15.48 15.20
162.5 12:90 13.14 8.28 18.24 17.37 17.17
187.5 13.84 13.92 8.48 19.46 18.82 18.43
212.5 14.66 14.70 9.61 20.71 20.19 19.64
237.5 15.04 15.21 10.08 21.25 21.24 21.13
262.5 15.52 15.52 10.71 21.83 21.78 22.22
287.5 16.06 16.22 11.10 23.59 22.72 22.92
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FIGURE 1. - MEASURING APPARATUS
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{1) Retainer ring

(2) 1eveling disc

(3) Leveling screws

(4) Adjustable light shield
(5) Sensing-rod guide tube
(6) lLiquid helium dewar

(7) Liquid nitrogen dewar

JE— |
(8) Fused-quartz dilatometer and /L

sensing rod ! : E‘P
(9) Guide ring ‘

(10) Thermal expansion specimen , |

(11) Specimen heater L

Hi
(12) Fused-quartz centering bead . g §:§: ‘}
(13) Uprer Fizeau plate ‘ RN
(14) Tension screws

(15) Lower Fizeau plate

(18) Precision piston

(17) Precision cylinder

(18) Transfer tube

FIGURE 2. - INTERFEROMETER — DILATOMETER SYSTEM
AND DEWAR ASSEMBLY
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